
Team17 - Gnocchi Games

Henry Overton
Yousif Habib
Ben Dunbar

Lucy Newton
Adam Blanchet
Thomas Heenan

Method Selection and Planning

Method Selection and Planning

Software Engineering Method

Our team chose to go ahead with an Agile Software Engineering method, one akin to Scrum.
As we are a relatively small team of 6 Agile suited us well as we could quickly focus on the
tasks at hand, as opposed to non-agile methods which require lots of time to set up detailed
and rigid plan requirements. With Agile, we can plan quickly and change our requirements
easily while causing as little disruption to the rest of development as possible.

A plan-driven method was also considered by some members of the team, however this idea
was discarded as we came to realise we were not sure about our requirements. Each Team
Meeting we had for the first few weeks resulted in a list of new questions about the product
that were to be addressed in a Team-Customer Meeting. If we were to have used a
plan-driven method, we would have lost a great deal of time spent redesigning our plan
every time our requirements changed, thus an Agile method was chosen.

Agile suited our weekly meetings, where we would initially discuss the results of the most
recent Team-Customer meeting before going on to update our requirements. Therefore a
Scrum-like Agile method is what we chose to adopt, weekly meetings which start weekly
sprints.

Collaborative Tools
To support the team in our Agile method, we used a selection of development and
collaboration tools:

● Zoom

For our weekly meetings, we used the video conferencing software Zoom. We chose Zoom
mainly because this is the software used to conduct our weekly Engineering1 practical
sessions, and we chose to continue using the program due to its various helpful features.
These features include efficient synchronous communication between team members, which
is very important for improving team spirit, as well as screen sharing functionality, which
proved useful when working on visual-oriented tasks such as diagrams. The ability to screen
share also helped us to walk through other team members who were having difficulties.

● Discord

Discord was our other main form of communication. We used it to talk to other team
members, primarily through text channels. Discord also offers voice calls and screen sharing
and, while we did use Zoom for our weekly meetings, these features were very useful for
quick, spontaneous, and informal communication that didn’t necessarily require each team
member to be present. It was well suited to our small team, and we had created multiple text
channels to discuss different parts of the project.

Other reasons as to why we chose to use Discord include the fact that all of us already had
used it for other purposes, and therefore we all had accounts - this made the setup quicker

and easier as we all had prior experience with using Discord. In addition, Discord has a
smartphone app, which made it easier to communicate with team members in emergencies
while they were away from their computer.

● Google Drive

For the majority of our planning, documentation, and reports, the team elected to use Google
Drive with Google Docs. It was an easy decision to make as the University provided us all
with Google Suite accounts and so the setup was very easy. Our shared drive was very
valuable to us as it allowed us to centrally store the majority of our documents, including
UML diagrams, a Gantt chart, and other pieces of documentation. In addition, Google Docs
enabled us to collaboratively and concurrently edit such documents. The “comment” feature
on Google Docs also enabled us to give feedback on each other’s work in a clear and
straightforward way, directly on the document itself.

● GitHub

Another major tool used by our team was GitHub. GitHub is a multi-faceted tool which
provides our team with many features that we were able to use to facilitate development.
The main reason we chose GitHub was for its code hosting capabilities and version control.

By using Git and GitHub we were able to collaboratively write code for the game without
having to resort to manually sending each other our changes via email/Discord. We had a
centralised codebase where we would merge our changes in an effective manner. Alongside
this, the version control offered by Git enabled us to revert any harmful changes and go back
to the last working version. As it keeps track of the history of all changes made, we were
able to look back and figure out what went wrong,

Finally, GitHub also provides GitHub Projects, which are effectively Kanban boards
and are useful in dealing with project planning in Agile/Scrum environments. Since we had
chosen to use Scrum as our software engineering method, and had already chosen to use
GitHub for the aforementioned reasons, it seemed natural to use GitHub Projects as a
means of planning out tasks. Each team member would take on their assigned task from the
To Do column, place it in the In Progress column, and then transfer it to the For Review
column. Finally, once another team member had reviewed the task, it was moved to the
Done column. The Kanban board is very flexible, and any new tasks that appeared simply
had to be put into the To Do column. This flexibility fit in very well with our Agile method,
where our requirements would often change at weekly intervals.

● LibGDX

The bulk of the development was done using LibGDX, a free open-source framework which
allows you to develop games using Java. We chose to use this as opposed to other java
based game development tools such as Slick2D, LITIENGINE, or LWJGL (which LibGDX is
based upon) as these proved a variety of issues including a steep initial learning curve, a
general lack of support and updates, and poor or lacking documentation. We chose to use
LibGDX and, in conjunction with Git/GitHub, has served us perfectly. It was easy to set up
and use, with plenty of documentation in the form of its own community driven Wiki.

 Team Approach to Team Organisation

Our team decided to approach organisation in a flexible way, to allow for an iterative and
robust development process. We opted for an agile team organisation method based off of
the Scrum approach, having weekly Scrums in conjunction with daily message
communication.

We would conduct weekly meetings in which we would allocate tasks to team members for
the next weekly sprint, these would be based on the deliverables listed on the Assessment
Brief. For each individual task, we would estimate how much work was required and what
skills were necessary, we would then assign the task to the team member that felt the most
qualified to approach it. However, some tasks required a lot less work than others and so, to
ensure the workload was divided evenly, some team members were assigned multiple tasks
from different sections. While this kept things fair, it also helped to increase our bus factor as
if one team member was suddenly unable to produce any work, there was a high likelihood
that another team member was also (or previously had been) working on that same task and
could easily assume the other’s work.

We also peer reviewed each other's work weekly and gave feedback. This was also to make
sure that all team members were happy with the tasks they were assigned or, if they were
struggling, whether they needed another member to help or to switch tasks completely. We
felt that this system helped massively as there was a lot of open communication between the
group so that each member felt sufficiently supported and the majority of issues were nipped
in the bud.

We also believe that this approach to team organisation was especially appropriate for the
given project because of the short time frame and small team size.

The Assessment Brief breaks down each deliverable into multiple separate tasks, a
visualisation of this can be seen on our website in the form of a Work Breakdown Diagram.
We believed that assigning team members to different tasks would help speed up
development as multiple parts of the project were making progress at any one time, rather
than the entire team working together on one task. We felt this would inevitably leave some
team members out and could create tension between members who may be trying to take
control over the current task, ultimately slowing down development.

As our tasks were directly derived from the assessment brief and elicited requirements, team
members always fully understood which requirement or deliverable they were working
towards fulfilling. This ensured that all relevant deliverables were linked back to the
requirements, as well as all written documentation being clear, concise, and complete.

Week 9 Gantt chart

Pictured above is the critical path for the game to be playable

