
Team17 - Gnocchi Games

Henry Overton
Yousif Habib
Ben Dunbar

Lucy Newton
Adam Blanchet
Thomas Heenan

Requirements

Requirements

Our team used a 4-Phase Requirement Elicitation process.
Phase One
This involved gathering requirements, which were put together using both the product brief
and the information we had received during our initial and follow-up Team-Customer
meetings.
Phase Two
This had our primary developers taking the requirements gathered in Phase One and
prioritising them in accordance with the importance of each requirement.
Phase Three
Requirements would be scrutinised for possibly ambiguities or incorrectness by all members
of the team, with the customer providing clarification where necessary.
Phase Four
The documentation of all requirements would be formalised with clear and easy-to-read
tables to give a systematic and formatted view of everything.
The requirements document begins with a SSON (Simple Statement Of Need) which gives a
clear picture of what a final and complete version of the system should be able to provide.

In the documentation, requirements are split into four separate tables, one for each type of
requirement. These are:

● User
● Functional
● Non-Functional
● Constraint

For User, Functional, and Non-Functional each is given a unique ID beginning with a prefix
dependent on the type of requirement (UR, FR, NFR, respectively).

All requirements in the User table are prioritised using the key words Shall, Should, and
May.

Shall means that requirement will absolutely be in the final version of the product.
Should means that while the requirement should be in the final version, we cannot absolutely
guarantee we will be able to include it.
May means that while the requirement would be beneficial to the overall quality of the
product, it is not an absolute necessity and will only be included if we have the time and
resources.

Each functional and non-functional requirement is connected to a corresponding user
requirement that it helps satisfy. In the Functional and Non-Functional tables, each
requirement references the ID of the requirement in the User table it is linked to. In the
Non-Functional table each requirement also has a “Fit Criteria”, this is a brief description of
what will be done to make sure that specific requirement is met.
Finally, the Constraint table consists of two columns. Constraint, which simply contains the
type of constraint, and Description, which details the specifics of that particular constraint.

User Requirements

Functional Requirements

Simple Statement Of Need

A casual single-player game based on the York Dragon Race, where users play as a boat
team competing in a race, consisting of three legs and a final.

ID Description Priority

UR_PLAYABLE The game shall be playable Shall

UR_RUNNABLE The game shall be runnable on standard computer hardware Shall

UR_MOVE_BOAT The user shall be able to move their boat Shall

UR_AI The user shall have competing AI boats to race against Shall

UR_TIME_PUNISHMENT The user shall receive a time punishment for leaving their designated
lane

Shall

UR_INSTRUCTIONS The user shall receive instructions on how to play the game Shall

UR_TIRED The boat paddlers shall get tired as the race goes on Shall

UR_CASUAL The game should be a casual gaming experience Should

UR_CHOOSE_BOAT The user should have a selection of boats to choose from Should

UR_COMPLETABLE The game should be able to be completed within a given time frame Should

UR_FAIR The game should be balanced Should

UR_DIFFICULT The difficulty of each leg should be more than the last Should

UR_OBSTACLES The user should have objects in the river to dodge Should

UR_OBSTACLES_DAMA
GE

The users robustness should decrease every time an object is hit Should

UR_PRACTICE The first leg should not count towards qualifying times for the final race Should

ID Description User_Requireme
nts_ID

FR_START_LEVEL The system shall start a leg after a boat is picked UR_PLAYABLE

FR_END_LEVEL The system shall end the leg when the player crosses the finish line UR_PLAYABLE

FR_END_LEVEL_DNF The system shall end the leg when all other opponents have crossed
the finish line

UR_PLAYABLE

FR_CONTROLS The system will allow the user to use the keyboard to control their
boat

UR_RUNNABLE

Non-Functional Requirements

FR_COLLIDE_BOAT When two boats collide both take damage UR_MOVE_BOA
T

FR_AI_REMAINING AI shall control the remaining boats for the user to race against UR_AI

FR_ADDITIONAL_TIME The time spent outside of a boat’s designated lane will be added to
their finishing time

UR_TIME_PUNI
SHMENT

FR_DISPLAY_INSTR When the game is launched the user will receive instructions on how
to play

UR_INSTRUCTI
ONS

FR_TIRED_INCREASE A boat’s acceleration and maneuverability will decrease as time goes
on

UR_TIRED

FR_CHALLENGE The game should not expect users to perform difficult tasks UR_CASUAL

FR_BOAT_SELECTION The look and stats of the boat the user selects will be the same as
the boat the user controls in the race

UR_CHOOSE_B
OAT

FR_UNIQUE_BOAT No two boats in the boat selection screen should be the same UR_CHOOSE_B
OAT

FR_END_BOAT_BREAK The system will end when the user’s boat breaks UR_COMPLETA
BLE

FR_CALCULATE_FINAL The system will calculate the combined times of legs 2 and 3 for
each team, with the fastest three teams going to the final

UR_COMPLETA
BLE

FR_END_FINAL The system will award the player a medal after the final UR_COMPLETA
BLE

FR_PODIUM The system will display the finalists on a podium UR_COMPLETA
BLE

FR_AI_RULES AI should follow the same rules as the user does UR_FAIR

FR_AI_IMPROVE The AI should increase in difficulty at the end of each leg UR_DIFFICULT

FR_OBSTACLES_INCR The number of obstacles used in each leg should be more than the
last leg

UR_DIFFICULT

FR_OBSTACLES_MOVE Obstacles should move in a variation of patterns depending on their
type

UR_OBSTACLE
S

FR_CALC_DAMAGE The amount of damage taken to the user’s robustness should be
calculated using the type of obstacle and the speed of the colliding
objects

UR_OBSTACLE
S_DAMAGE

FR_IGNORE Performance in first leg will not be recorded UR_PRACTICE

ID Description User_Require
ments_ID

Fit Criteria

Constraint Requirements

NFR_RESILIE
NCE

A malfunction in another boat or part of the
race should not affect the user’s performance
in the race

UR_PLAYABL
E

If another boat runs out of
health or gets stuck it will not
affect the user

NFR_USABILI
TY

The game shall be in plain English with no
especially difficult words

UR_PLAYABL
E

All text is in clearly worded
English

NFR_VISIBILIT
Y

Any text or information displayed should be
clearly visible

UR_PLAYABL
E

The colour of text is in a
contrasting colour to the
background and in a readable
size

NFR_RELIABI
LITY

The system shall reliably run from the start
state to an end state

UR_RUNNABL
E

Crash Likelihood: <1%

NFR_RESOUR
CES

The system shouldn’t demand lots of
resources

UR_RUNNABL
E

<1% of resources of a
standard computer

NFR_PORTAB
LE

There should be no issue playing the game
on a different OS

UR_RUNNABL
E

Game file executes correctly
across all Operating Systems

NFR_RESPON
SE

The system should respond to user inputs
quickly

UR_MOVE_BO
AT

Time to respond: <0.1s

NFR_SIMPLE Users should be ready to play the game
shortly after reading the instructions

UR_INSTRUC
TIONS

1-2 minutes spent reading
instructions

NFR_OPERAB
ILITY

The game should be playable with minimal
training

UR_CASUAL 90% of players should be able
to win Leg 1 after just looking
at the instructions

NFR_TIME The game should be finished in under X
minutes

UR_COMPLET
ABLE

Time taken to complete game
is <=10 minutes

NFR_INTEGRI
TY

Stats of boats should not be changeable
mid-game and presets should be fairly
balanced

UR_FAIR All boats are capable of
winning

NFR_ACCURA
TE

Time taken for a boat to complete a leg and
time taken out of its own lane will be recorded
accurately

UR_FAIR >1% margin of error

NFR_PRECISI
ON

The system should reliably detect collisions UR_OBSTACL
ES

Collisions detected 99% of the
time

Constraint Description

Process The game must be coded in Java

Design Game will be playable on regular computer hardware running on popular operating systems

